中文字幕乱码免费

  • <dfn id="h9sws"><sup id="h9sws"><sub id="h9sws"></sub></sup></dfn>
      1. <tr id="h9sws"></tr><big id="h9sws"><nobr id="h9sws"><track id="h9sws"></track></nobr></big>
        當前位置:首頁 >> 客戶服務技術資料

        勵磁線圈對插入式電磁流量計的影響

        發布時間:2020-01-04 19:12:05 瀏覽:

        插入式電磁流量計因其特殊的結構形式,致使其抗干擾能力較弱、準確度偏低以及瞬時流量波動過大等不良現象,但便于安裝、造價低廉、普遍應用于大管道等特點而存在。為了發揮其優勢,消除其不利因素,對其內部結構及其相關技術參數進行優化設計,從而使其準確度能夠達到±1%FS,使抗干擾能力得到極大地增強。本文主要通過優化設計、選擇材料和試驗,使插入式電磁流量計的穩定性和準確度大幅度提高,并提出解決措施,對實際應用具有參考價值。分析與研究程序圖如圖1所示。

        1 測量原理

        根據法拉第電磁感應定律的工作原理,也就是液態導體在磁場中做切割磁力線運動時,對導體內產生感應電動勢(Es)的分布進行分析,研究磁場分布的影響規律,在保證高準確度、高可靠性和抗干擾能力強、瞬時流量波動范圍小的前提下,尋求寬范圍流量測量時最優的插入式電磁流量計。

        圖1 插入式電磁流量計在工作時的磁場分布規律及各種因素的分析、改進線路圖

        圖1 插入式電磁流量計在工作時的磁場分布規律及各種因素的分析、改進線路圖   下載原圖

        Fig.1 Magnetic field distribution of the plug-in electromagnetic flowmeter during operationanalysis of various factors and improvement of the road map

        圖2 插入式電磁流量計探頭部件(電極、勵磁線圈的相對位置)結構分布圖

        圖2 插入式電磁流量計探頭部件(電極、勵磁線圈的相對位置)結構分布圖   下載原圖

        Fig.2 Plug-in electromagnetic flowmeter probe parts(relative positions of electrode and excitation coil)structure map

        插入式電磁流量計測量液體的流量時,液體為導電液體,電導率應大于5μs/cm,流體流過垂直于流動方向的磁場導電液體的流動感應出平均流速,從而獲得與流體的體積流量成正比的感應電動勢(Es),感應電動勢方程為[1]:

         

        式中:Es---電動勢,伏特(V)

        B----磁感應強度,特斯拉(T)

        D----測量管內徑,厘米(cm)

        V----被測液體平均流速,米/秒(m/s)

        因插入式電磁流量計與一般的法蘭管道式電磁流量計有很大的不同,插入式電磁流量計的傳感器外側形成發射磁場,測量電極在傳感器的端部,故此根據尼庫接磁(NIKURADS)原理,測量導電液體流量時,導電流體流過垂直于流動方向的磁場導電液體的流動感應出平均流速,從而獲得與流體的體積流量成正比的感應電動勢,感應電動勢信號被兩個與流體相接觸的電極檢測出來,在轉換器中顯示瞬時流量和累計流量,并通過轉換器轉換成標準電信號輸出到上位機,即4mA~20mA DC,如圖2所示。

        插入式電磁流量計的測量探頭測得管道內部特定位置(管道內徑的1/8處)的局部流速,以確定管道流速,插入式電磁流量計的傳感器是在測量探頭外側形成外發射磁場,測量電極在傳感器的端部。

        基于以上目的,為了降低外發射磁場的電磁流速傳感器所產生的感應信號受信號流體和磁場的邊界層厚度影響,會降低測量的線性度,通過一體化的特殊優化設計,在外徑為:Ф47mm(因為需要使用2〃螺紋球閥,球閥通孔直徑為:50mm的緣故),內徑為:Ф40mm,長度為:77mm的空間內進行布置各個相關零、部件(兩個電極、兩個電極加長桿,勵磁線圈部件),應用法拉第電磁感應定律和尼庫接磁(NIKURADS)原理,將磁感應強度充分發揮,達到高準確度、高可靠性、寬范圍的流體測量,同時采用新材料、新工藝,該結構還具有耐高溫,并且適用于大口徑管道的流體測量等特性。

        圖3 插入式電磁流量計探頭部件外觀結構分布圖

        圖3 插入式電磁流量計探頭部件外觀結構分布圖   下載原圖

        Fig.3 Distribution structure of the appearance of the plug-in electromagnetic flowmeter probe components

        通過大量的試驗,對探頭端部外型結構亦采用特殊設計,從而消除兩個電極之間的擾流現象,同時亦消除因通電產生磁場,導致兩個電極吸附介質中的鐵屑而影響測量精度和死區效應,增強了輸出信號的穩定性,從而提高傳感器準確度和抗干擾性。通過結構的優化設計,使用壽命更長,插入式電磁流量計探頭局部,如圖3所示。

        2 實踐當中遇到的實際難題

        在生產實踐中,發現剛剛纏繞完畢的勵磁線圈,由于摩擦生熱的原因,直接進行測量阻值時,阻值往往大于理論計算值(1Ω~2Ω)。當勵磁線圈在自然環境中失效幾個小時后,勵磁線圈的阻值恢復到理論設計值。從而推論,含有勵磁線圈的插入式電磁流量計受現場管道介質溫度的影響非常大,致使插入式電磁流量計的轉換器內的技術參數發生變化,影響其過程控制的準確度,而且瞬時流量波動過大。

        其原因是:勵磁線圈的阻值及匝數是按照常溫狀態下進行設計的,而含有勵磁線圈的插入式電磁流量計經常是高于常溫狀態下進行安裝、使用(如:高爐回水、供熱管道等),勵磁線圈的阻值隨使用環境溫度的變化而變化,致使插入式電磁流量計測量時的準確度大為降低,性能的不確定性大為增加,為了保證儀表的高準確度和穩定性,在不同的季節(主要是環境溫度和介質溫度),經過大量模擬現場實際情況的試驗,并結合轉換器的技術參數要求,得出一個完善的勵磁線圈各種技術參數。

        圖4 插入式電磁流量計模擬現場工作環境試驗圖

        圖4 插入式電磁流量計模擬現場工作環境試驗圖   下載原圖

        Fig.4 Test chart of simulated field working environment of plug-in electromagnetic flowmeter

        模擬現場試驗裝置如圖4所示。

        試驗方法:首先,把插入式電磁流量計和溫度傳感器按照圖中所示固定在自動加熱箱體中;其次,把插入式電磁流量計的勵磁線圈的引線(聚四氟乙烯屏蔽線)與萬用表測量阻值端鈕相連接,并把檔位定格在200Ω刻度線上;同時把溫度傳感器(PT100鉑電阻)的引線與溫度顯示器相連接。

        經檢查無誤后,經過大約10min,記錄此時水箱中水的溫度,然后接通220V AC電源,自動電加熱箱體內的水進行升溫,以水每升高5℃,記錄一次萬用表顯示的阻值,記錄直至水溫達到100℃時的阻值。

        試驗數據如下:

        為了滿足現場管道高溫介質對插入式電磁流量計測量準確度的影響,探頭勵磁線圈的阻值在環境溫度(T=15℃時),按照理論計算值進行纏繞,為60Ω±0.5Ω,漆包圓繞組線直徑:φ=0.21mm,經過多次升高介質(自來水)溫度進行試驗,勵磁線圈的電阻值與溫度的變化數據表示如下:

        1)2018年12月份北方的冬季,室溫:15℃~20℃內進行第一次試驗,升溫試驗時間共75min。

        勵磁線圈的電阻值與溫度的變化數據表示如下:

        水溫:15℃時,勵磁線圈阻值:R=60.2Ω

        水溫:20℃時,勵磁線圈阻值:R=61.3Ω阻值升高1.1Ω

        水溫:25℃時,勵磁線圈阻值:R=62.5Ω阻值升高1.2Ω

        水溫:30℃時,勵磁線圈阻值:R=63.8Ω阻值升高1.3Ω

        水溫:35℃時,勵磁線圈阻值:R=64.9Ω阻值升高1.1Ω

        水溫:40℃時,勵磁線圈阻值:R=66.4Ω阻值升高1.5Ω

        水溫:45℃時,勵磁線圈阻值:R=67.5Ω阻值升高1.1Ω

        水溫:50℃時,勵磁線圈阻值:R=68.8Ω阻值升高1.3Ω

        水溫:55℃時,勵磁線圈阻值:R=70.0Ω阻值升高1.2Ω

        水溫:60℃時,勵磁線圈阻值:R=71.1Ω阻值升高1.1Ω

        水溫:65℃時,勵磁線圈阻值:R=72.2Ω阻值升高1.1Ω

        水溫:70℃時,勵磁線圈阻值:R=73.4Ω阻值升高1.2Ω

        水溫:75℃時,勵磁線圈阻值:R=74.5Ω阻值升高1.1Ω

        水溫:80℃時,勵磁線圈阻值:R=75.4Ω阻值升高0.9Ω

        水溫:85℃時,勵磁線圈阻值:R=76.6Ω阻值升高1.2Ω

        水溫:90℃時,勵磁線圈阻值:R=77.9Ω阻值升高1.3Ω

        水溫:95℃時,勵磁線圈阻值:R=78.9Ω阻值升高1.0Ω

        水溫:100℃時,勵磁線圈阻值R=81.4Ω阻值升高2.5Ω

        第一次試驗結論:水溫從15℃升到100℃時,每升高5℃,勵磁線圈的電阻值平均增大1.247Ω。

        2)勵磁線圈完全處于室溫:15℃~20℃狀態下,24h后進行第二次試驗,升溫試驗時間共80min。

        勵磁線圈的電阻值與溫度的變化數據表示如下:

        水溫:6℃時,勵磁線圈阻值:R=58.8Ω

        水溫:10℃時,勵磁線圈阻值:R=59.8Ω阻值升高1.0Ω

        水溫:15℃時,勵磁線圈阻值:R=60.2Ω阻值升高0.4Ω

        水溫:20℃時,勵磁線圈阻值:R=61.5Ω阻值升高1.3Ω

        水溫:25℃時,勵磁線圈阻值:R=62.8Ω阻值升高1.3Ω

        水溫:30℃時,勵磁線圈阻值:R=63.8Ω阻值升高1.0Ω

        水溫:35℃時,勵磁線圈阻值:R=65.0Ω阻值升高1.2Ω

        水溫:40℃時,勵磁線圈阻值:R=66.2Ω阻值升高1.2Ω

        水溫:45℃時,勵磁線圈阻值:R=67.0Ω阻值升高0.8Ω

        水溫:50℃時,勵磁線圈阻值:R=68.7Ω阻值升高1.7Ω

        水溫:55℃時,勵磁線圈阻值:R=69.9Ω阻值升高1.2Ω

        水溫:60℃時,勵磁線圈阻值:R=71.2Ω阻值升高1.3Ω

        水溫:65℃時,勵磁線圈阻值:R=72.3Ω阻值升高1.1Ω

        水溫:70℃時,勵磁線圈阻值:R=73.2Ω阻值升高0.9Ω

        水溫:75℃時,勵磁線圈阻值:R=74.7Ω阻值升高1.5Ω

        水溫:80℃時,勵磁線圈阻值:R=75.8Ω阻值升高1.1Ω

        水溫:85℃時,勵磁線圈阻值:R=76.7Ω阻值升高0.9Ω

        水溫:90℃時,勵磁線圈阻值:R=77.9Ω阻值升高1.2Ω

        水溫:95℃時,勵磁線圈阻值:R=79.1Ω阻值升高1.2Ω

        水溫:100℃時,勵磁線圈阻值:R=81.2Ω阻值升高2.1Ω

        第二次試驗結論:水溫從15℃升到100℃時,每升高5℃,勵磁線圈的電阻值平均增大1.179Ω。后又在本季節多次進行試驗,試驗結果大體相似。

        3)2019年7月12日星期四上午8:15開始試驗,試驗室溫:25℃~30℃內進行第三次試驗,升溫試驗時間共30min。

        勵磁線圈的電阻值與溫度的變化數據表示如下:

        水溫:20℃時,勵磁線圈阻值:R=61.4Ω

        水溫:25℃時,勵磁線圈阻值:R=62.5Ω阻值升高1.1Ω

        水溫:30℃時,勵磁線圈阻值:R=63.8Ω阻值升高1.3Ω

        水溫:35℃時,勵磁線圈阻值:R=64.9Ω阻值升高1.1Ω

        水溫:40℃時,勵磁線圈阻值:R=66.4Ω阻值升高1.5Ω

        水溫:45℃時,勵磁線圈阻值:R=67.5Ω阻值升高1.1Ω

        水溫:50℃時,勵磁線圈阻值:R=68.8Ω阻值升高1.3Ω

        水溫:55℃時,勵磁線圈阻值:R=70.0Ω阻值升高1.2Ω

        水溫:60℃時,勵磁線圈阻值:R=71.1Ω阻值升高1.1Ω

        水溫:65℃時,勵磁線圈阻值R=72.2Ω阻值升高1.1Ω

        水溫:70℃時,勵磁線圈阻值:R=73.4Ω阻值升高1.2Ω

        水溫:75℃時,勵磁線圈阻值:R=74.5Ω阻值升高1.1Ω

        水溫:80℃時,勵磁線圈阻值:R=75.4Ω阻值升高0.9Ω

        水溫:85℃時,勵磁線圈阻值:R=76.6Ω阻值升高1.2Ω

        水溫:90℃時,勵磁線圈阻值:R=77.9Ω阻值升高1.3Ω

        水溫:95℃時,勵磁線圈阻值:R=78.9Ω阻值升高1.0Ω

        水溫:100℃時,勵磁線圈阻值:R=80.1Ω阻值升高1.1Ω

        水溫:100℃時,連續進行8小時高溫度(100℃)水進行試驗,此時的勵磁線圈阻值:R=80.1Ω~81.4Ω范圍內波動。

        這次夏季試驗結論:水溫從20℃升到100℃時,每升高5℃,勵磁線圈的電阻值平均增大1.1625Ω。后又在本季節多次進行試驗,試驗結果大體相似。

        通過北方寒冷的冬季及夏季的數十次試驗,其試驗的結果基本一致。

        為了使勵磁線圈產生的磁力線均勻、完整地包裹電極,勵磁線圈的磁芯要盡量與電極端部相接近,使電極整體充分地切割磁力線,同時兼顧電感值的大小,在電感值適中的情況下(后面論述,經過理論計算和試驗,電感值:L=390mH為宜),從而產生連綿不斷的、強大、穩定的磁場信號,在實踐中起到了大大降低過程控制流量的波動性,并且增加了流速的穩定性(最小流速為0.2m/s時,可精準、穩定地測量),同時使插入式電磁流量計在標校時的標校系數大為降低(如轉換器的標校系數:1~5.9999,則實際標校過程中,標校系數只為1.3左右),使標校過程簡易化,更容易進行標校,極大地減輕了標校人員的工作強度,儀表的準確度更高。勵磁線圈部件與端部電極的相對位置如圖5所示。

        3 插入式電磁流量計優化設計

        通過在不同季節進行的數十次試驗結果,再結合轉換器本身的技術參數的要求,以及在插入式電磁流量計傳感器的有限空間內,進行技術參數、新材料和新工藝的優化設計。

        1)根據閉合回路的屬性---電感原理及公式:L=μQ×μr×Ae×N2/l

        式中:L—電感,單位:亨(H)

        μQ—自由空間的導磁率:4д×10-7H/m

        圖5 插入式電磁流量計的勵磁線圈磁芯與電極頭部的位置圖

        圖5 插入式電磁流量計的勵磁線圈磁芯與電極頭部的位置圖   下載原圖

        Fig.5 Location diagram of the excitation coil core and electrode head of the plug-in electromagnetic flowmeter

        μr—磁芯材料相對的導磁率,單位:亨/米(H/m)

        Ae—磁芯的截面積,單位:平方米(m2)

        N----勵磁線圈的匝數

        l----勵磁線圈纏繞長度,單位:米(m)

        2)精選勵磁線圈磁芯的材質以及尺寸的選擇

        根據尼庫接磁(NIKURADS)原理,設計、制造和特性參數試驗。為了增大導磁率,極大地改善封閉性磁力線強度,故此選擇實心勵磁線圈,使磁感應強度大幅增加。

        磁芯采用磁性等級:超級;牌號:電工純鐵(型號:DT4C);矯頑力:≤32,矯頑力時效增值:≤4,最大導磁率:≥0.0151

        工業純鐵質地特別軟,韌性特別大,電磁性能很好。工業純鐵熔點比鐵高,在潮濕的空氣中比鐵難以生銹,在冷的濃硫酸中可以鈍化;同時電磁性能好。矯頑力(Hc)低,導磁率μ高,飽和磁感(Bs)高,磁性穩定又無磁時效。鋼質純凈度高,電工純鐵系列鋼質均為鎮靜鋼,又采用了精練,所以內部組織致密,均勻,優良,氣體含量少,成品含碳量≤0.004%,冷、熱加工性能好。冷加工如車、墩、沖、彎、拉等都無問題,具有良好的加工性能,加工表面質量好。

        3)勵磁線圈的漆包圓繞組線的選擇

        根據中華人民共和國國家標準GB/T6109.1—2008《漆包圓繞組線第一部分:一般規定》[2]和GB/T6109.2—2008《漆包圓繞組線第二部分:155級聚酯漆包銅圓線》[3]的相關規定,并且結合插入式電磁流量計的具體使用情況及使用范圍的安全裕度,選擇型號:QZY=XY-2/200,線徑:φ0.21mm。

        型號:QZY+XY-2/150的含義

        系列代號Q—漆包圓繞組線

        漆膜代號Z—聚酯類漆

        Y—聚酰亞胺類漆

        非自粘性漆包線2—二級漆膜

        耐溫溫度150—攝氏度:150℃

        插入式電磁流量計勵磁線圈的結構形式如圖6所示。

        圖6 插入式電磁流量計勵磁線圈的結構圖

        圖6 插入式電磁流量計勵磁線圈的結構圖   下載原圖

        Fig.6 Structure diagram of the excitation coil of the plug-in electromagnetic flowmeter

        根據以上不同季節的數10次試驗,勵磁線圈得出相應的技術參數如下:

        a)從勵磁線圈的漆包圓繞組線的選擇(如:勵磁線圈的型號、線徑等)如上所述。

        b)關于勵磁線圈的阻值通常情況下的理論值均在常溫下進行計算與確定,但一定要結合轉換器的相關技術參數進行選擇。

        選擇方法:如插入式電磁流量計所選擇的轉換器匹配的阻值為:(X~Y)Ω時,則勵磁線圈的阻值大于或等于1.5X即可。這樣既能滿足流動介質溫度低于常溫時,勵磁線圈阻值必然降低,但不影響轉換器的正常工作,同時亦能滿足介質溫度高于常溫時,勵磁線圈阻值升高,也不影響轉換器的正常工作。

        c)從結構上講,勵磁線圈的磁芯必須長于線圈部件為好。其磁芯長出部分應與采集信號的電極基本在一個基準線上,在現有的磁場強度下增加磁力線最大程度上包裹電極,使之電極采集信號的最大化,由此增加插入式電磁流量計的準確度和穩定性。

        4 結論

        本文提出了一種基于插入式電磁型流量計在實際應用過程中,勵磁線圈經過優化設計、磁芯材料的選擇和探頭結構等方面的改進,提高其在現場運行過程中的穩定性、準確度等級和抗干擾能力,充分發揮插入式電磁流量計自有優勢,對該產品質量的提升具有實質性作用。

        中文字幕乱码免费
      2. <dfn id="h9sws"><sup id="h9sws"><sub id="h9sws"></sub></sup></dfn>
          1. <tr id="h9sws"></tr><big id="h9sws"><nobr id="h9sws"><track id="h9sws"></track></nobr></big>